OIL CROPS:
BRASSICA
SUBNETWORK

PROCEEDINGS OF THE
THIRD WORKSHOP, QUALITY
TRAINING, AND CHINESE
PROJECT REPORTS,
HELD IN SHANGHAI,
PEOPLE'S REPUBLIC OF CHINA,
21–24 APRIL 1990

ABBAS OMRAN
Oil Crops: Brassica Subnetwork

Proceedings of the Third Workshop, Quality Training, and Chinese Project Reports, held in Shanghai, People’s Republic of China, 21–24 April 1990

Edited by Abbas Omran
Technical Advisor, Oilcrops Network

Organized by Ministry of Agriculture, Beijing, China and International Development Research Centre, Ottawa, Canada

INTERNATIONAL DEVELOPMENT RESEARCH CENTRE
Ottawa • Cairo • Dakar • Johannesburg • Montevideo • Nairobi • New Delhi • Singapore
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of Contents</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>Participants</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>Introduction. ABBAS OMRAN</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PART I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>QUALITY TRAINING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Analysis of Glucosinolate in Canola and Rapeseed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Determination of Glucosinolates by Gas Liquid Chromatography of the</td>
<td>J.K. DAUN, D.R. DECLERCQ AND D.I. MCGREGOR</td>
<td>8</td>
</tr>
<tr>
<td>Trimethylsilylethers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Determination of Glucosinolate Content by Gas Liquid Chromatography of</td>
<td>J.P. RANEY AND D.I. MCGREGOR</td>
<td>14</td>
</tr>
<tr>
<td>Trimethylsilyl Derivatives of Desulfated Glucosinolates.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Determination of Glucosinolate Content by Gas Chromatography of</td>
<td>D.I. MCGREGOR</td>
<td>20</td>
</tr>
<tr>
<td>Trimethylsilyl Derivatives of Glucose.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Determination of Total Glucosinolate and Total Indole Glucosinolate</td>
<td>D.I. MCGREGOR</td>
<td>24</td>
</tr>
<tr>
<td>Content of Rapeseed/Canola Using Glucose Oxidase to Measure Glucose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Ferric nitrate to Measure Free Thiocyanate Ion.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Determination of Total Glucosinolate Content of Rapeseed/Canola</td>
<td>S. WANG, Z.Y. YUAN AND D.I. MCGREGOR</td>
<td>33</td>
</tr>
<tr>
<td>Using Immobilized Myrosinase and Glucose Oxidase.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTION 2. Manual of Additional Training Lectures and Papers.</td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>- Total Glucosinolate Content In Rapeseed Using Reflectance.</td>
<td>R.J.W. TRUSCOTT AND J.T. THOLEN</td>
<td>41</td>
</tr>
<tr>
<td>- A Simple Method for Identifying the Low-Eruic Acid and Low-Glucosinol</td>
<td>WU MOUCHENG AND YUAN JUNHUA</td>
<td>45</td>
</tr>
<tr>
<td>ate Rapeseed-Turbidity Titration-Colorimetry.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- An Outline of Research On Rapeseed Quality Analysis.</td>
<td>WU XINGYONG</td>
<td>48</td>
</tr>
<tr>
<td>- New Methods of Myrosinase Bioreactor and Glucose Sensor for Rapid</td>
<td>ZHONG YI YUAN, XIAO JUN WANG, TIAN MIN ZHU, PEI YING CHEN, AND XIN SONG</td>
<td>50</td>
</tr>
<tr>
<td>and Accurate Assay of Glucosinolates in Rapeseeds.</td>
<td>JI</td>
<td></td>
</tr>
<tr>
<td>PART II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A FINAL SUMMARY REPORT OF SINO–CANADIAN RAPSEED BREEDING PROJECT.</td>
<td>QU NINGKANG</td>
<td></td>
</tr>
<tr>
<td>1. Shanghai Academy of Agricultural Sciences(SAAS), Shanghai, China.</td>
<td>YAN ZHANG, GUANGHUA FANG</td>
<td>57</td>
</tr>
<tr>
<td>2. Institute of Oilcrops Chinese Academy of Agricultural Sciences,</td>
<td>CHENGQING LIU</td>
<td>61</td>
</tr>
<tr>
<td>Wuhan, China.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART III
BRASSICA SUB-NETWORK COUNTRY PRESENTATIONS

- The Fast Developing Oilcrops Network - A Summary Report. ABBAS OM Ran.................. 78
- A Brief Report on the Brassica Sub-Network. BASUDEO SINGH.. 83
- Research Progress on Rapeseed in Egypt. BADR A. EL-AHMAR... 85
- Quality Breeding in Brassica carinata A. Braun in Ethiopia. GETINET ALEMAW AND HIRUY BELAYNEH.................. 90
- Some of the contributions of Dr. Hiruy Belayneh to Oilseed Brassica Research in Ethiopia. GETINET ALEMAW........... 92
- Strategies in Rapeseed and Mustard Development in Kenya. M.J. MAHASTI... 95
- Status of Brassica Crops in Pakistan. MOHAMMED HANIF QAZI AND PARVEZ KHALIQ. 98
- National Uniform Rapeseed-Mustard Yield Trials and Their Role in Variety Selection. MOHAMMED HANIF QAZI AND MASOOD A. RANA. .. 108
- Present Status and Future Strategies of Oilseed Brassica Research in India. P.R. KUMAR AND P.S. BHATNAGAR........ 112
- Rapeseed-Mustard in Nepal. B. MISHRA. 117
- Constraints and Opportunities of Brassica oilseed Production in Bangladesh. M.A. ISLAM, M.A. KHALEQUE, K.P. BISWAS AND M.R.I. MONDAL..................... 120
- Progress in Rapeseed-Mustard Research in Bhutan. TAYAN RAJ GURUNG.. .. 125
- Overview of Rapeseed Production and Research in China. YAN ZHANG. ... 130
- Analysis of Eight High-Quality Rapeseed (Brassica napus L.) Strains for - High and Stable Seed Yield. CHAOCAI SUN, GUANGHUA FANG AND HUA ZHAO.. 134
- Canola Research in Australia. GREGORY BUZZA. 136
- Goals for 1989 - 1991 and Progress of the Barani Agricultural Research and Development Project (BARD) in Pakistan, Pertaining to Brassica. HANS HENNING MUENDEL..... 137

PART IV
BRASSICA SUB-NETWORK: DISCUSSIONS / RECOMMENDATION

- Collaborative Programmes - Minutes of Meeting for Scientific Exchange and Institutional Collaborative Programmes among Member Countries of Brassica Sub-Network. 140
- India/China Collaboration - Minutes of Meeting of Counterpart Scientists for International Collaborative Research Between China and India......................... 143
- General Discussions and Recommendations...................................... 147
A SIMPLE METHOD FOR IDENTIFYING LOW-ERUCIC ACID AND LOW-GLUCOSINOLATE RAPESEED-TURBIDITY TITRATION-COLORIMETRY

Wu Moucheng and Yuan Junhua
Huazhong Agricultural University, Wuhan, China

A simple analytical method for rapeseed breeding, producing, purchasing and processing is reported. It is based on turbidity titration(1). Determination of erucic acid and glucosinolate for 5 samples can be carried out within a quarter. Absolute error for erucic acid estimation less than 0.5% when the content of erucic acid below 6%, and for glucosinolate less than 2 μmole/g when glucosinolate content below 30 μmole/g. Very similar results have been required by different operators.

The main studies presented in the paper are the condition of extracting polar glucosinolate and nonpolar fat from rapeseed at one time in room temperature, the curve about turbidity titration and the effects of various factors in glucosinolate colorimetry.

EXPERIMENTAL CONDITION

I. Instrument and reagents:
1. Extract: dissolve 5 mL Triton X-100 in 500 mL absolute ethanol.
2. Titration solution: 75-80% aqueous ethanol.
3. Oxide silicon dust (SiO₂)
4. PdCl₂ solution: put 177 mg dCl₂ in the mixture of 2 mL 2N HCl and 10 mL H₂O, then heat and solitize and make up to 1 litre with H₂O.
5. CHCl₃
6. Little spoon (0.5g) made by self.
7. Glass mortar
8. Test tube with plug (10m)
9. Graduated pupet (2mL, 10mL)
10. Sucking globe
11. Centrifuge (or hand set centrifuge)
12. Standard rapeseed (erucic acid: 2% and 5%, glucosinolate: 15 and 25 μmole/g)

Table 1. Relation between glucosinolate content and absorbance.

<table>
<thead>
<tr>
<th>Glucosinolate (μmole/g)</th>
<th>12.500</th>
<th>20.000</th>
<th>24.600</th>
<th>31.200</th>
<th>40.000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorbance (E)</td>
<td>0.030</td>
<td>0.048</td>
<td>0.060</td>
<td>0.192</td>
<td>0.200</td>
</tr>
</tbody>
</table>

Table 2. Percentage of fatty acid in extracting solution (%).

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>C₁₈</th>
<th>C₁₆</th>
<th>C₂₀</th>
<th>C₂₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>avg. of 5 analyses</td>
<td>4.62</td>
<td>88.25</td>
<td>4.04</td>
<td>2.93</td>
</tr>
<tr>
<td>standard value</td>
<td>4.26</td>
<td>88.01</td>
<td>4.68</td>
<td>3.06</td>
</tr>
</tbody>
</table>

II. Extract fat and glucosinolate from rapeseed at one time:

1. Choice of extract:
 Effort was made to search for an extract which can extract polar glucosinolate and nonpolar fat at one time in room temperature so as to determine erucic acid and glucosinolate with same extracting solution. It proved that 1% Triton X-100 (neutral surface active agent) absolute ethanol solution is efficient to extract erucic acid and glucosinolate from rapeseed at one time in room temperature. Data presented in Tables 1 and 2 were obtained from the determination of glucosinolate with colorimetry and of fatty acid methyl ester by GC.

2. Other factors:
 Fat can't dissolve in water. The moisture content in extract had great effect on extracting of fat, especially with the fat containing erucic acid. So the extract-Triton X-100 solution must be prepared with absolute ethanol.

 Disposing the extract in the air for 21 hours (no test for much long), different temperature and humidity have no effects on the result.
III. Effective factors in the determination of glucosinolate with colorometry:

1. Tentative plan and test for the concentration of color-developing agent: This method is used in identifying low-glucosinolate rapeseed. Distinguishing vaults are suggested that .30 μmole/g rape cake (about 15 μmole/g rapeseed) for original seed and 50 μmole/g rape cake (about 25 μmole/g rapeseed) for commercial rapeseed(2). So we expected that the sudden change of colour is clear for visual photometry when glucosinolate content above 50 μmole/g rape cake, so as to identifying commercial rapeseed. And expected that there was Linear relate between the content and colour when glucosinolate content below 50 μmol/g rapeseed, so as to know the valid content for screening original rapeseed. Optimum content of color-developing agent and sample amount used were chosen and get ideal effect expected, Table 1.

2. Removal of the effects of fat and pigment: Glucosinolate and fat were extracted together. Adding color-developing agent into the extracting solution made fat colloidal flocculent precipitate. Pigment also interfered with visual photometry. An effect and simple method was adopted. That was adding CHCl₃ into the extracting solution before adding color-developing agent. By CHCl₃ extracting fat and pigment, the extracting solution was transparent, decoloured and to the benefit of visual photometry.

3. Effect of colour developing time:

Colour developing by glucosinolate and PdCl₂ need a long time—more than 10 hours. Color thickness is about 70% of the maximum in 5 minutes. Standard rapeseed and sample rapeseed parallel analysis can remove effect of color developing time.

IV. Turbidity Titration Curve:

Water content in titration solution had great effect. In order to identify the rapeseed in which erucic acid content below 5%, 75-80% aqueous ethanol was adopted to have great difference in solution volume. Titration curve is shown in Fig. 1.
SAMPLE ANALYSIS

Turbidity titration-colormetry procedure:
1. Representative rapeseed of different position is about 20g.
2. Put the sample put into a little clean bottle and mix.
3. Then abandon half of the rapeseed, shake and abandon another half.
4. Repent the operation till about 2.5 g rapeseed remains.
5. Take 0.5g sample with little spoon and put into glass mortar.
6. Add 0.5 g drug oxide silicon dust.
7. Grind.
8. Put into a test tube (10mL, with plug).
9. Add 8 mL extract solution.
10. Accurately extract 3 mins.
12. Take 1 mLx2 of the supernatant liquid into test tube 1 and 2.

Determination of erucic acid:
1. Add 2mL of extract into tube 1.
2. Mixing with 75-80% aqueous ethanol titrate till turbidity.
3. Recording volume of titrating solution.
4. Erucic acid content in sample was estimated by comparing with titration volume of standard rapeseed (2% of 5% erucic acid) of same operating procedure.

Determination of glucosinolate:
1. Add 1 mL CHCl3 into tube 2.
2. Mix.
3. Add 1 mL PdCl2 solution.
4. Mix.
5. Draw out CHCl3 below.
6. 5 mins.
7. Compare the color thickness between sample and standard rapeseed (15 or 25 umol/g rapeseed) and estimate the glucosinolate content of sample.

RESULT

Turbidity titration-colormetry have been tested and verified for three years. Table 3 is comparing the result with GC.

<table>
<thead>
<tr>
<th>erucic acid</th>
<th>>5%</th>
<th>5-2 %</th>
<th><2 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>coincidence</td>
<td>99%</td>
<td>98.7%</td>
<td>99.2%</td>
</tr>
</tbody>
</table>

* For glucosinolate, coincidence was 100%.

REFERENCES

(2) WU MOUCHENG AND YUAN JUNHUA. 1988. Crop Research, 2, 1-5, China.