Sanitation in Developing Countries

Meetings of a workshop on Sanitation held in Lobatse, Botswana, 12 August 1980
The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; social sciences; and communications. IDRC is financed solely by the Parliament of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East.

©1981 International Development Research Centre
Postal Address: Box 8500, Ottawa, Canada K1G 3H9
Head Office: 60 Queen Street, Ottawa

IDRC, Ottawa CA

/IDRC publication/, sanitation/, waste waters/, waste disposal/, appropriate technology/, health education/, Africa/ — sanitation services/, waste treatment/, methane/, disease transmission/, water supply/, water pollution/, health services/, auxiliary health workers/, civil engineering/, vocational training/, resistance to change/, financial aspects/.

Microfiche edition available
Sanitation in Developing Countries

Proceedings of a workshop on training held in Lobatse, Botswana, 14–20 August 1980

Sponsored by:
Government of The Republic of Botswana
International Development Research Centre
Canadian International Development Agency
Contents

Foreword 6
Participants 7

Technology

Use of dry pit latrines in rural and urban Ethiopia
K. Kinde 9

Pit latrines in Botswana
J.G. Wilson 13

Pit latrines in Malawi
A.W.C. Munyimbili 16

Housing sanitation, Mozambique
B. Brandberg and M. Jeremias 21

The PIP and REC II latrines
J.G. Wilson 24

On-site excreta disposal technologies
E.K. Simbeye 27

Anaerobic digestion as a rural sanitation option
R. Carothers 34

Zambia’s experience with aqua privies
J. Kaoma 41

The Botswana aqua privy
J.G. Wilson 48

Septic tanks
Beyene Wolde-Gabriel 50

Sanitary situation in Addis Ababa
Aragaw Truneh 52

Sewerage and low-cost sanitation: a solution to sanitation problems in developing countries
Frederick Z. Njau 56

Sullage disposal in urban centres
Frederick Z. Njau 59

Technology: discussion 61
Software

Disease transmission
G.P. Malikebu 64

Sanitation and disease transmission
J.B. Sibiya 68

Water pollution and sanitation in Botswana
L.V. Brynolf 71

Primary school health education in Tanzania
I.A. Mnzava 75

Health education in primary schools in Malawi
I.K. Medi 79

Health education delivery system in environmental health programs in Malawi
Winson G. Bomba 81

Rural health services in Ethiopia
Araya Demissie 84

Health education, an essential component in the promotion of health, with emphasis on rural sanitation
Saidi H.D. Chizenga 88

Water supply and sanitation in Lesotho
M.E. Petlane 94

The role of health education in sanitation programs
Winson G. Bomba 101

Some sociological aspects of sanitation provision (with particular reference to Botswana)
Nomtuse Mbere 105

Problems of acceptability of low-cost sanitation programs
P.M. Matiting 111

Community/household participation
A.W.C. Munyimbili 113

Applied community participation in sanitation provision
Nomtuse Mbere 118

Financial aspects of sanitation
Dawit Getachew 123

Financing of low-cost sanitation schemes in the urban areas of Botswana
Brian Bellard 131

Training implications within the sanitation sector in Tanzania
H.W. Rutachunzibwa 135

Health manpower planning and training
P.A. Chindamba 139

Software: discussion 143
Training

Training of civil engineers in Kenya
 J. Gecaga 148

Sanitary engineering education in the Faculty of Technology, Addis Ababa University
 Alemayehu Teferra 152

The training of health inspectors in Malawi
 P.A. Chindamba 153

Training of health assistants in Malawi
 G.P. Malikebu 155

Training of primary health care workers: a personal account
 Fred K. Bangula 157

Brigades in Botswana 161

Botswana Polytechnic and its involvement in the teaching of sanitation
 J.E. Attew 163

Ethiopian sanitation sector institutional responsibility
 Beyene Wolde-Gabriel 165

Training: discussion 166

Workshop Conclusions 167
Sullage Disposal in Urban Centres

Frederick Z. Njau

The problem of sullage disposal within the urban areas of most developing nations is as old as history itself. This problem, though visible, has received little, if any, attention, perhaps due to the fact that it is not a derivative of human excreta and, hence, in the minds of most people is harmless despite the intolerable nuisance of smell and providing breeding grounds for many waterborne diseases. As yet, no concrete solutions have been put forward for safe disposal of sullage in urban areas. The solutions discussed in this paper will be based partly on the experiences of others and partly on theoretical solutions.

Existing Disposal Methods: Their Advantages and Disadvantages

Sullage, as defined here, refers to all domestic wastewaters other than toilet wastes. The volumes of sullage generated will normally depend upon water consumption. The problem of sullage disposal, therefore, will be most prominent in those households not connected to sewerage or septic tank soakaway systems, i.e., those using low-cost sanitation systems. The volumes, therefore, will vary between those households obtaining water from public standpipes and using pit latrines or compost toilets, and those with a single water tap on site and using pit latrines.

In broad terms, there are six sullage disposal methods: (1) disposal on the ground within the compound; (2) disposal on the ground outside the compound; (3) on-site disposal, into ground seepage pits; (4) on-site disposal into pit latrines; (5) disposal into open drains; and (6) disposal into covered drains or sewers.

Disposal of sullage by some of these methods may have associated health risks. Throwing sullage on the ground creates wet, muddy conditions that may provide breeding sites for mosquitoes. If the soils are permeable and evaporation is high, however, this practice may be tolerable. The only danger likely to occur from disposal of sullage into properly designed underground soakaway pits is that of groundwater contamination. The problem is less likely to occur with sullage disposal in comparison with the disposal of sewage in this manner and is, therefore, acceptable. Similarly, disposal of sullage into pit latrines creates no greater risk than increasing the depth of seepage and, hence, contamination of deeper groundwater. This method, however, will also require frequent emptying of the pit and possible collapse of improperly lined pits. Sullage discharged into open drains during the dry season does not flow away and where ponding is likely would result in the existence of offensive odours and areas where mosquitoes would breed. Disposal of sullage into closed drains or sewers presents no health problem but may be expensive and unjustified.

Recommendations

The only safe and hygienic method of sul-
lage disposal, other than through a sewer system, is to construct a soakaway pit on site or off site, depending upon the land available and the soil conditions. A soakaway pit lined with open blockwork is recommended for soils with low permeability in order that it may be emptied without causing structural damage.