FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

ORGANISATION DES NATIONS UNIES POUR L'ALIMENTATION ET L'AGRICULTURE

ORGANIZACION DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACION

Session V

FAO EXPERT CONSULTATION ON ANIMAL PRODUCTION AND HEALTH RESEARCH

(IN COOPERATION WITH WAAP, WVA and EAAP)

Copenhagen, Denmark, 12-15 August 1974

THE POSSIBLE ROLE OF INTERNATIONAL CENTRES AND INTERNATIONAL AND BILATERAL AGENCIES AND FOUNDATIONS IN STRENGTHENING ANIMAL PRODUCTION AND HEALTH RESEARCH FOR THE DEVELOPING COUNTRIES

by

Barry L. Nestel
Associate Director, Agriculture, Food and Nutrition Sciences
I.D.R.C., Bogotá, Colombia

The International Development Research Centre (IDRC) is one of the newest of the international agencies concerned with agricultural research and development. The Centre was founded approximately four years ago largely at the instigation of the late Lester B. Pearson, then Prime Minister of Canada, and of Morris Strong, at that time President of the Canadian International Development Agency and now Executive Director of the UN Environment Programme. The seeds of IDRC's origin appear to be associated with two important observations to be found in Mr. Pearson's report entitled "Partners for Development". The first of these relates to the observation that a very small amount of "research and development" funds were being allocated to the problems of the Third World. The second observation was that some of the most successful development activities that the Pearson Commission observed were those associated with the research programmes of the Ford and Rockefeller Foundations which were able to concentrate on a long-term basis on very specific problems and to do so in a way that was not inhibited by geographical or political constraints. In 1970, when the Canadian Government was in the process of bringing about a substantial expansion in its Aid Programme, it created IDRC as a Crown Corporation with the objective of "initiating, encouraging, supporting and conducting research into the problems of the Third World and into the means for applying and adopting scientific, technical and other knowledge to the economic and social advancement of the developing regions".

The Centre is financed almost entirely by the Government of Canada but is operated independently and is governed by a Board of 21 members, 10 of whom are non-Canadians. Additionally, the senior programme staff are about half Canadian and half non-Canadian.

The Centre is organized into four programme divisions covering the fields of agriculture, food and nutrition sciences, information sciences, social science and human resources and population and health sciences. At the present time the largest programme area is in the field of agriculture, food and nutrition.

As in most of the Centre's other programmes, the major part of the funding in the agricultural programme is devoted to support for applied research in developing country institutions. The research programme is heavily oriented towards building up the research capacities of indigenous institutions and to this end the Centre only provides a limited number of expatriate staff. Thus, at the present time, with an annual budget of about
7 million dollars a year for the agricultural programme, its staff consists of 7 senior
and 6 junior professionals divided between Head Office, Regional Offices and International
Agricultural Research Centres and 16 technical advisors located in field projects. In all
cases the technical advisors are provided on the condition that they work as members of the
research team of the recipient institution. IDRC does not supply project managers or
directors.

The role of IDRC

In developing this approach and in defining the activities of the agricultural
programmes, we have tried to identify a role for IDRC which would not duplicate that of other
international organizations and which would not overlap with our sister organization, the
Canadian International Development Agency (CIDA). In developing this philosophy we have
focused very heavily on the international Agricultural Research Centres, since research
is the raison d'être of our existence. We also recognize that being relatively small and
new, provides us with a great deal more flexibility than many organizations and that at the
present stage of growth this flexibility appears to be a particularly advantageous asset for
collaborative programmes with the International Centres.

In working with the International Centres we have been associated with three
types of programmes, namely, the core programme of the Centres themselves, basic research
in Canada to backstop the Centres and support for "outreach" programmes in the developing
countries. Generally speaking we have not provided core budget support for the International
Centres (except for enabling funds which we have been able to mobilize rapidly to help get
the new Centres of ICRISAT, IIRAD and ILCA off the ground), although such support may be
provided in the future. In the case of CIAT and CIAT, IDRC has managed two major research
programmes, the greatest part of the funds for which were provided from CIDA's budget.

In the case of the CIAT programme, Canadian support is specifically for
triticale research. The Canadian institutional link is relatively straightforward since
the University of Manitoba in Winnipeg had worked on triticale for some years and they
were already associated with CIAT in carrying out some of the basic breeding and cyto-
genetic work necessary for the CIAT programme. Winnipeg is too cold for winter triticales,
so a related support programme has also been developed at the University of Guelph for
growing winter triticales. Thus Canadian institutions are able to provide basic research
support plus a winter testing station for the CIAT programme which is already reaching
countries. To facilitate this outreach, IDRC has supported triticale research in several high altitude developing countries such as Chile and Ethiopia.

IDRC is also involved with a related activity in conjunction with ICRISAT,
the semi-arid zone research centre in India where the main commodity interests are grain
legumes, millet and sorghum. From its own resources IDRC is financing ICRISAT's legume
research programmes. In this area we are also involved in assisting local programmes in a
number of Asian, African and West Indian countries, in addition to supporting basic research
in Canada on the mechanism of drought resistance, which we hope will lead to a better understand-
ing of this phenomenon in sorghum and millet. In the case of the outreach programme,
we do not provide expatriate advisors for those countries where there is adequate local
professional input and where the main requirements are research expenses plus the opportunity
for the researchers to visit with people working in related fields. In a number of African
countries there is still a shortage of trained personnel, particularly in plant breeding,
and in such circumstances we try to put in a young person at or about the Ph.D. level who
will work as a member of the team while local staff are away on training.

1) International Crop Research Institute for the Semi-Arid Tropics. 2) International
Laboratory for Research on Animal Diseases. 3) International Livestock Centre for Africa.
4) International Maize and Wheat Improvement Centre. 5) International Centre of Tropical
Agriculture.
With CIAT in Colombia, we have a programme which closely parallels the triticate one, in that we manage core budget and Canadian support funds granted by CIDA, but we ourselves support outreach projects in Latin America, Africa and Asia.

The three programmes that I have referred to above are amongst our biggest programmes, although we are also associated in programmes with other international centres and in programmes that have no relation at all to those of the international centres. In some cases our activities lie mid-way between these extremes. Dr. Howell has already referred to our involvements with EAVRO and with the University of Guelph in a trypanosomiasis programme which, later on, will relate to the basic research and outreach activities of IIRAD, when that institution becomes fully functional. In the animal production field we are also involved in developing a research network relating to the utilization of tropical by-products and unconventional feeds, and in this context support programmes involving the use of coffee pulp, sugar-cane by-products and cassava.

Research networks

The theme of our approach is to develop research networks rather than a series of "ad hoc" projects. In this respect we put considerable effort into arranging small workshops of 15-25 developing countries' scientists who have common research interests. We believe that this type of meeting is often more productive than providing funding for people to go to large international meetings or for short courses in the developed countries. It is our experience that many developing country scientists trained overseas become highly frustrated when limited facilities are available to them in their own country. We believe that by providing some research funding to such scientists and by providing them with the opportunity to exchange experiences with personnel in similar circumstances we are able to help overcome some of these frustrations. We find it particularly fruitful to provide support for graduate assistants to carry out research in developing country projects, since we feel that many developing country scientists have obtained their postgraduate qualifications working on problems totally unrelated to the realities of their home country. This is sometimes due to selfishness on the part of developed country professors, but more often is attributable to funding limitations which curtail opportunities for carrying out home-based research in the Third World. In an effort to overcome this problem, an important part of our funding for research is channeled into providing support for developing country scientists to do research for higher degrees in their own countries.

We have also encouraged those Canadian institutions to which we are providing support, to use Third World graduate students in their programmes and to try to orient the work of these students towards problems with which they will be confronted at home. One excellent example of this type of approach concerns a programme at Guelph where the objective is to produce single cell protein from cassava. This programme was requested by CIAT whose early efforts at microbiological enrichment of cassava were promising but lacked adequate equipment and specialists to carry them through to fruition.

At the University of Guelph, a programme to support CIAT in this field has participants from the Departments of Microbiology, Nutrition, Animal Science and Agricultural Engineering. In each of these four departments a foreign student from a developing country is working for an M.Sc. on the cassava project. The project has now identified an organism which raises the protein content of a raw cassava mash from 2% to 15% and the process does not require cooling or sterilization and utilizes a simple agitator fermentor. By the time that toxicity tests will have been completed this summer, a scaled up fermentor will have been built in Guelph and this will provide enough protein to feed 100 pigs daily. In October the fermentor will be shipped to CIAT for installation and during the next few months the technical input will be phased out from Guelph and handed over to CIAT and to a neighbouring Colombian University, which will provide technical advice in those fields where CIAT does not possess appropriate expertise.
I would like to illustrate the cassava network further by using two animal-oriented problems. Both of these relate to the use of cassava as an animal feed. For several years Dr. J.M. Nemer has been carrying out research in this field at CIAT. Nemer's work has shown that cassava could provide a useful source of energy in livestock rations, particularly for swine, but that with high levels of cassava intake there was an impaired performance in terms of liveweight gain. The literature on this theme is very incomplete but there are suggestions that the poor weight gains are due both to a deficiency of methionine in the cassava itself and also because the animal body selectively uses sulphur-containing amino acids, such as methionine, to detoxify the cyanogenic glucosides of cassava.

Nemer's results highlighted two problems. The first was to identify whether cassava really could play a significant role as an animal feed in the future and the second to identify the significance of cyanide and methionine in cassava nutrition.

Cassava as an animal feed

In order to handle the first problem we contracted with the Agricultural Economics Department of the University of Guelph for an experienced staff member to spend a year studying the global market prospects for cassava as both human and animal feed and also as a source of industrial starch. The scientist involved established excellent working relations with both the export and the import sides of the trade and with international organizations such as OECD, EEC, FAO, IIRD and some bilateral agencies. At the end of a year's work he submitted a report to a workshop composed of members of the agencies I have mentioned above and to the principal importing and exporting countries. Following the workshop's critical review, IDRC published a report which indicated that cassava appeared to have remarkable growth prospects as an animal feed. Indeed, during the last ten or twelve years, Thailand and Indonesia have between them developed an export market in dried cassava chips and pellets which provides them with about $100 million a year of foreign exchange. Two million tons of dried chips and pellets which currently enter the European Common Market still only comprise a very small portion of that market's feed energy requirements.

The report that I have referred to looks at the growth potential of cassava in terms of both minimum costs and legal requirements for compound feeds, and it indicates that as early as 1980 the EEC could be importing between two and four times as much cassava as it imported last year. If either of these figures comes to be realized, cassava will assume an importance in international trade much above that of some better known commodities. However, even more significant is the fact that much of the world's cassava production takes place in countries which have a large livestock population. These countries are generally protein deficient and some of them are importing cereal grains for livestock feed and exporting cassava at a considerably lower price, although its value as a feed is only ten to twenty dollars a ton less than that of corn.

This price differential could become less and the value of cassava could become greater if some of the work on microbial production from cassava currently under way in Canada and in Malaysia were to bear fruit. The whole subject could also become vastly more attractive if the current research on cassava breeding and agronomy (two very neglected fields), were to lead to the production of higher yielding varieties which could lower both production costs and farm prices for cassava. Research to meet this goal is currently underway in an integrated program which includes activities in Latin America, Africa and Asia.

Cassava toxicity

The second aspect of the animal feeding work that I would like to mention relates to the toxicity story. The literature on chronic cassava toxicity in man goes back only 40 years and only in the last 10 years or so have scientists in Nigeria and Zaire started to produce firm facts relating neurological and thyroid disorders in man to high cassava intakes.
The neurological disorder appears to be a straightforward toxicity resulting in a demyelini-
Sation of the peripheral nerves. The thyroid problem looks like a secondary toxicity caused
by a blockage of the transfer of iodine in the thyroid due to thiocyanate (SCN) produced by
the detoxification of cyanide by sulphur-containing amino acids such as methionine.

Although these problems do not appear to be of major importance in animals fed
on cassava diets, possibly due to the limited duration of such feeding, the whole subject
is sufficiently uncertain that we wanted to review it in depth in terms of the postulated
growth prospects for cassava as both a food and a food. To this end we organized a small
workshop at which inputs were provided on the genetics and biosynthesis of cyanogenesis in
plants, the agronomy and physiology of cyanogenic glucosides in plant tissues, the
implications of cyanide toxicity in human and animal nutrition and the assay and
detoxification of cyanides in the body.

As a result of this workshop, which brought together researchers from as far
apart as Colombia, Nigeria, Indonesia and New Zealand, we were able to define that it
should be possible to produce plants of a very low cyanide content and that providing
that this did not lead to major changes in the pest resistance of the plant nor to massive
consumer rejection of processed cassava products, this would be a highly desirable attribute
for human nutrition. However, from the animal feeding standpoint, because of the low
methionine level in cassava, it would be safer to add methionine to cassava rations as a
route. From the standpoint of research policy, this workshop led us to support
activities on the large-scale screening of cassava plants for cyanide levels, on the
improvement of assay techniques, on the evaluation of whether chronic toxicity was really
due to cyanides or to their glucoside precursors and to support a joint Belgium/Zaire
programme of applied research to reduce the incidence of congenital cretinism in children
born to mothers on very high cassava diets in northern Zaire.

I have mentioned these examples in some detail because when you study them
and look at the distribution and disciplines of the participants in the two workshops,
you will get a better concept of what I mean when I talk of an interdisciplinary research
network. I have dealt in depth with cassava since this is a programme with which I have
particular familiarity. It has developed from scratch in the last three years and it
illustrates particularly well the type of role that our organization is trying to play.

International cooperation

Because we have a highly mobile senior staff scattered throughout the world
and because of the excellent working relations which we have with the other international
agencies forming the Consultative Group for International Agricultural Research, and
with the International Centres themselves, we believe that we are developing an effective
inter agency network which facilitates the establishment of the type of network that
I have talked about. Obviously the success of any network of this type depends very largely
on the degree of cooperation provided by both the participants and the donor agencies. Our
experience has been that we could not have asked for better cooperation and we believe that
the periodic workshops that we hold to bring together people with related interests
contribute considerably to this type of activity.

In 1970, when we started to negotiate our contracts with CIAT and CIDA, the
total amount of funding flowing to cassava research appeared to be less than US$250 000 a
year. The figure for this year will be about ten times that amount, of which about a
third comes from the seed money that CIDA put into the CIAT/Canadian programme. Within
three years, funds have started to flow to the programme from a number of other members of
the Consultative Group on International Agricultural Research (CGIAR). Apart from the funds
themselves, even more encouraging is the fact that most of the donor agencies have gone out
of their way to consult the ongoing programmes and to relate to them, so that at the
present time there is considerable integration in research activities in this field. The
existence of the CGIAR and the opportunities that it provides for inter-agency dialogue
appear to have facilitated this approach.
I have dealt at some length on cassava rather than on a specific animal production or health theme, since I believe that we shall see an increasing amount of livestock research activities in the future approached from this type of interdisciplinary standpoint. The model that I have used for cassava appears to warrant further examination in the animal research field, particularly in terms of specific subjects such as trypanosomiasis or in the better utilization of tropical by-products as animal feeds.

This type of approach appears particularly suitable for support by international agencies and centres whose senior staff are constantly on the move and have unique opportunities for identifying institutions and people who can contribute to effective problem-oriented networks. Furthermore, by the careful selection of institutions and people in developed countries, appropriate backstopping can often be provided in the most effective and economical way, provided that the research objectives are focused on both the needs of the developing countries and the human and physical resources of the backstopping institution.